skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walker, Allison S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The natural product yatakemycin (YTM) is a potent antimicrobial DNA damaging agent. YtkR4 and YtkR5 are deoxyribonucleases that provide resistance to YTM toxicity by removing the a basic site produced by YtkR2 cleavage of a YTM-adenosine lesion. 
    more » « less
  2. The ribosome translates the genetic code into proteins in all domains of life. Its size and complexity demand long-range interactions that regulate ribosome function. These interactions are largely unknown. Here, we apply a global coevolution method, statistical coupling analysis (SCA), to identify coevolving residue networks (sectors) within the 23S ribosomal RNA (rRNA) of the large ribosomal subunit. As in proteins, SCA reveals a hierarchical organization of evolutionary constraints with near-independent groups of nucleotides forming physically contiguous networks within the three-dimensional structure. Using a quantitative, continuous-culture-with-deep-sequencing assay, we confirm that the top two SCA-predicted sectors contribute to ribosome function. These sectors map to distinct ribosome activities, and their origins trace to phylogenetic divergences across all domains of life. These findings provide a foundation to map ribosome allostery, explore ribosome biogenesis, and engineer ribosomes for new functions. Despite differences in chemical structure, protein and RNA enzymes appear to share a common internal logic of interaction and assembly. 
    more » « less